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This paper reviews the use of similarity searching in chemical databases. It begins by introducing the
concept of similarity searching, differentiating it from the more common substructure searching, and then
discusses the current generation of fragment-based measures that are used for searching chemical structure
databases. The next sections focus upon two of the principal characteristics of a similarity measure: the
coefficient that is used to quantify the degree of structural resemblance between pairs of molecules and the
structural representations that are used to characterize molecules that are being compared in a similarity
calculation. New types of similarity measure are then compared with current approaches, and examples are
given of several applications that are related to similarity searching.

1. INTRODUCTION

Databases of two-dimensional (2D) or three-dimensional
(3D) molecular structures play an increasingly important role
in modern chemical research.1-3 The most common type
of retrieval mechanism issubstructure searching, which
involves the retrieval of all those molecules in a database
that contain a user-defined query substructure, irrespective
of the environment in which the query substructure occurs.4

Substructure searching has proved to be a valuable tool for
accessing databases of chemical structures, especially now
that 3Dpharmacophore searchingis available to complement
the long-established facilities for 2D substructure searching.5

It does, however, have several limitations that arise from
the requirement that a database structure must contain the
entire query substructure if it is to be retrieved,6 which
implies that the user who is posing a database query must
already have formed a fairly clear view of the types of
structure that will be retrieved.

The first limitation of substructure searching is that the
specification of a pharmacophore query requires sufficient
knowledge of the geometric requirements for activity to be
able to specify distance and/or angular constraints to
characterize those molecules, and just those molecules, that
can fit into a biological receptor site. Such pharmacophores
are generally identified by comparing several bioactive
molecules to identify the pattern of features that they have
in common,7 which is clearly very difficult at the start of an
investigation when perhaps just a single weak lead is
available and when it is thus not possible to specify the
particular feature(s) that are responsible for the observed
activity. The user also has very little control over the size
of the output that is produced by a particular query
substructure. Thus, the specification of a broadly defined
query and/or a common ring system can result in the retrieval

of many thousands of compounds from a chemical database
(unless it is also possible to apply additional filters, such as
a user-defined range of values for some physicochemical
property); alternatively, an initial query may prove to be too
specific, retrieving very few, or even no, structures. In either
case, it may be necessary to reformulate the query one or
more times before an appropriate volume of output is
available for subsequent analysis. Finally, a substructure
search results in a simple partition of the database into two
discrete subsets, i.e., those structures that do contain the query
and those that do not. There is thus no direct mechanism
by which the retrieved molecules can be ranked in order of
decreasing similarity to the query, i.e., in order of decreasing
probability of activity if the search is intended to identify
possible bioactives in the database.

These characteristics of substructure searching have led
to the development of the alternative, and complementary,
access mechanism known assimilarity searching.6 A query
here generally involves the specification of an entire
molecule, thetarget structure, rather than the substructure
that is required for substructure searching (although the target
can be a substructure of another, larger molecule if desired).
The target is characterized by one or more structural
descriptors, and this set is compared with the corresponding
sets of descriptors for each of the molecules in the database.
These comparisons enable the calculation of a measure of
similarity between the target structure and each of the
database structures, and the latter are then sorted into order
of decreasing similarity with the target. The output from
the search is a ranked list in which the structures that are
calculated to be most similar to the target structure, the
nearest neighbors, are located at the top of the list. These
neighbors form the initial output of the search and will be
those that have the greatest probability of being of interest
to the user, given an appropriate measure of intermolecular
structural similarity.
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In this paper, we provide an overview of chemical
similarity searching. The next section introduces the 2D
(two-dimensional), fragment-based measures of structural
similarity that are used in the current generation of similarity
searching systems. This is followed by more detailed
discussions of similarity coefficients and structural repre-
sentations, and the paper concludes by discussing other
applications of similarity searching and by highlighting areas
where further work is required. A more extended review of
these, and other, aspects of molecular similarity is provided
by Downs and Willett.6

2. FRAGMENT-BASED SIMILARITY SEARCHING

The first two reports of similarity searching appeared in
the mid-1980s, based on work carried out at Lederle
Laboratories8 and at Pfizer.9 The starting points for these
two, near-contemporaneous studies were very different, but
both groups of workers realized that counts of the numbers
of fragment substructures common to a pair of molecules
provided a computationally efficient, and surprisingly ef-
fective, basis for quantifying the degree of structural
resemblance between the two molecules under consideration.

The Lederle study was carried out as part of a project to
develop simple, robust techniques for the prediction of
biological activity that would not suffer from the sample-
to-feature problems that affect many types of high-
dimensionality descriptors.10 Molecules were represented by
their constituentatom pairs, where an atom pair is a
substructural fragment comprising two non-hydrogen atoms
together with the number of intervening bonds (see section
4 below). These characterizations were used for two
applications: for similarity searching, with the set of atom
pairs describing a user-defined target structure being matched
against the corresponding sets for each of the database
structures, andsubstructural analysis, where weights are
calculated that relate the presence of a specific substructural
moiety in a molecule to the probability that that molecule is
active in some biological test system.11 The similarity search
allowed users to request either some number of the top-
ranked molecules or all those that had a similarity with the
target structure greater than a minimal value. The latter
search option does require the user to have at least some
feeling for the magnitudes of the values resulting from the
chosen similarity measure, but it serves to restrict the output
to those molecules that do have a significant level of
resemblance to the target structure.

The work at Pfizer started out as a way of prioritizing the
outputs of 2D substructure searches from their in-house
chemical information system. A user of the Pfizer system
would submit not only a conventional substructural query
but also a target molecule typical of the sorts of structure
that were required. The conventional screen search and
atom-by-atom search4 were used to identify the matches to
the query substructure, and then a similarity measure based
on the screens common to the target and each of these
matches was used to rank the substructure-search output in
order of decreasing similarity with the query; specifically,
the similarities were calculated using the Tanimoto coef-
ficient that is discussed in the next section of this paper. At
least in part, the initial substructural query was used to
minimize the elapsed time required for the calculation of

the similarities, by restricting the similarity calculation to
just that small fraction of the database not eliminated by the
substructure search. The subsequent development of a much
faster nearest neighbor search algorithm, based on an inverted
file, allowed the ranking of an entire database against the
target structure in real time, without the need for the
specification of the initial substructural query.

Interactive, fragment-based similarity searching has proved
to be extremely popular, both for property prediction
purposes (as in the work at Lederle) and for allowing end-
users to pose “give me 10 more like this” queries (as in the
work at Pfizer), and it is now a standard retrieval mechanism
in nearly all operational systems for chemical information
management. However, it must be remembered that similar-
ity searching provides a very crude way of accessing a
structural database, since it is appropriate when just a single
bioactive molecule is available. Progressively more sophis-
ticated approaches are appropriate as more structural data
become available: substructure or pharmacophore searching
when sufficient bioactive molecules are available to generate
a query specification and adockingsearch (see section 5
below) when the 3D structure of the biological target is
known. Even so, it makes obvious sense to exploit whatever
information is available, and much effort has thus gone into
the development of similarity searching since the Lederle
and Pfizer systems were reported just over a decade ago.
This work has involved both enhancements of fragment-
based searching and the use of different types of similarity
measure.

An example of an enhanced fragment-based system is
provide by Hagadone’s work onsubstructure similarity(or
subsimilarity) searching.12 Conventional similarity searching
is appropriate when the need is to identify complete structures
that are similar to the target structure. Such aglobal
similarity search,6 i.e., one in which the entire matching
structures are involved in the similarity calculation, is far
less effective when the need is to identify molecules
containing a substructure that is similar to a target structure
or target substructure. This is an example of alocal
similarity search,6 i.e., one in which account must be taken
of parts of the molecules that are being compared and in
which a more detailed similarity calculation is required. In
subsimilarity searching, a simple, fragment-based similarity
search is used to calculate an upperbound to the size (in terms
of the numbers of constituent atoms or bonds) of the maximal
common substructure (or MCS) between the target (sub)-
structure and each database structure; these upperbounds are
then used to prioritize database structures for an MCS search
that uses a rapid, but approximate, maximal common
subgraph isomorphism algorithm.

Another example of a similarity search system that uses
fragment occurrence information in combination with a
second-level search is described by Fisanick et al. as part of
a project to develop facilities for similarity searching in the
Chemical Abstracts Service (CAS) Registry File, using 2D,
3D, and molecular property data.13-15 The 2D studies
involved subsets of the substructural fragments that comprise
the CAS Online screen dictionary,16 focusing on the different
types of similarity relationships that can be identified between
a target structure and a database structure when different
classes of substructural fragment are employed. For ex-
ample, the selection ofaugmented atoms(an atom and its
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pendant atoms and bonds) andatom sequences(unbranched
chains of atoms) gives a very different view of the structural
resemblances between a pair of molecules from that provided
by the selection of ring composition fragments (the atoms
within a ring and the bonds between them). This suggests
that further analysis into mixed descriptor types could give
users an even more flexible approach to similarity searching,
perhaps using the data fusion techniques discussed in the
final section of this paper. Another part of the CAS work
includes a second-stage search based onreduced graphs,17-19

which, unlike substructural fragments, retain some of the
topological relationships between areas of a molecule and
which are thus capable of providing a local measure of
similarity.

Both of the studies above thus involve the combination
of a global, fragment-based, similarity algorithm with a more
sophisticated, local, graph algorithm that allows some degree
of substructural matching: ways of combining substructural
constraints in a global similarity measure are discussed by
Willett20 and by Grethe and Hounshell.21

Further developments have focused on the similarity
measure that is used to quantify the degree of structural
resemblance between the target structure and each of the
structures in the database that is to be searched. Many
different types of similarity measure have been discussed in
the literature,6,22-24 but they generally involve three principal
components: therepresentationthat is used to characterize
the molecules that are being compared, theweighting scheme
that is used to assign differing degrees of importance to the
various components of these representations, and thesimilar-
ity coefficientthat is used to provide a quantitative measure
of the degree of structural relatedness between a pair of
structural representations. While there has been some interest
in the extent to which the weighting scheme affects the utility
of a similarity measure,13,25,26there is a much more extended
literature relating to the other two components, and these
are hence reviewed in the next two sections of this paper.

3. SIMILARITY AND DISTANCE COEFFICIENTS

The idea of determining a numerical measure of the
similarity (or conversely, the distance) between two objects,
each characterized by a common set of attributes, is common
to a wide range of disciplines, including biology, psychology,
and bibliographic information retrieval. Because of the
diversity of these application areas, and the lack of com-
munication between them, there has been a great deal of
duplication of effort, and commonly used similarity coef-
ficients have been reinvented a number of times; this partly
accounts for the variety of different names applied to some
of these coefficients. This section reviews those coefficients
that have found widespread use in chemical information
systems; more comprehensive surveys of the very many
coefficients available are provided by Huba´lek,27 Gower,28

and Ellis et al.,29 inter alia.
An object A can be described by means of a vectorXA of

n attributes such that

wherexjA is the value of thejth attribute of object A, as
detailed in Table 1 (which provides a complete list of the
symbols used in this section of the paper). The values of

the attributes may be real numbers over any range (and may
involve some weighting factor applied to the basic property
value involved), or they may be confined to dichotomous
(i.e., binary) values, indicating the absence (0) or presence
(1) of some particular feature of the object. In the case of
a molecular object, the attributes might be a set ofn
topological indexes or calculated physicochemical properties,
or the on/off state of each of then bits in the fingerprint
representing the molecule.

Some coefficients are measures of the distance, or dis-
similarity between objects (and have a value of 0 for identical
objects), while others measure similarity directly (and have
their maximum value for identical objects). In most cases
the values that can be taken by a coefficient lie in the range
from 0 to 1 or can be normalized to that range: this is
typically effected by means of a function based on the values
of the attributes for the two objects that are being compared,
with the resulting coefficients being referred to asassociation
coefficients. The zero-to-unity range provides a simple
means for converting between a similarity coefficient and a
complementary distance coefficient, namely, subtraction from
unity. In some cases a similarity coefficient and its comple-
ment have been developed independently and are known by
different names; e.g., the Soergel distance coefficient is the
complement of the Tanimoto (or Jaccard) association coef-
ficient.

Distance coefficients are analogous to distances in mul-
tidimensional geometric space, though they are not neces-
sarily precisely equivalent to such distances. For a distance
coefficient to be described as ametric it must have the
following properties:

(1) Distance values must be zero or positive, and the
distance from an object to itself must be zero:

(2) Distance values must be symmetric:

(3) Distance values must obey thetriangular inequality:

(4) The distance between nonidentical objects must be
greater than zero:

A distance coefficient which has only the first three of these
properties is calledpseudometric, and one which does not

XA ) {x1A, x2A, x3A, ...,xjA, ...,xnA}

Table 1. Symbols Used

i,j attributes
A, B objects (or molecules)
n total number of attributes of an object

(e.g., bits in a fingerprint)
XA attribute vector describing object A
xjA value ofjth attribute in object A
øA set of “on” bits in binary vectorXA

a number of bits “on” in molecule A
b number of bits “on” in molecule B
c number of bits “on” in both molecules A and B
d number of bits “off” in both molecules A and B
SA,B similarity between objects A and B
DA,B distance between objects A and B

DA,B g 0, DA,A ) DB,B ) 0

DA,B ) DB,A

DA,B e DA,C + DC,B

A * B S DA,B > 0
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have the third property isnonmetric. Though a particular
distance coefficient may have all four properties, this is not
sufficient to imply that the distances involved can be
embedded in a Euclidean space of any given dimensionality
(e.g.,n, the number of properties). Certain other properties
are necessary, and even then the dimensionality of the space
required may be much larger thann. The requirements for
Euclidean embedding are discussed by Gower.28

Though a large number of similarity and distance coef-
ficients have been defined (and often redefined, by different
authors), many of them are closely related to each other. In
some cases, the same coefficient can be obtained by different
routes; in other cases coefficients which are different when
calculated for continuous attributes become equivalent when
applied to binary attributes. Certain coefficients are de-
scribed as beingmonotonicwith each other, which means
that it can be shown analytically that they will always
produce identical similarity rankings of objects against a
specified target, even though the actual coefficient values
are different. Even though two coefficients may not be
completely monotonic, the values resulting from their use
may well exhibit a high degree of correlation, as demon-
strated by Holliday et al. in a comparison of the Cosine and
Tanimoto coefficients.30 Some pairs of coefficients, con-
versely, exhibit very low correlations, suggesting that they
are reflecting very different characteristics of the objects that
are being compared;29 an extended empirical study of the
monotonicity relationships existing between no less than 43
different coefficients is reported by Huba´lek.27

Where the attribute values are restricted to 0 and 1, the
expressions used for the various similarity and distance
measures can often be substantially simplified. In this
context a number of useful symbols can be defined. For
objects A and B characterized by vectorsXA and XB

containingn binary values (such as fingerprints) we can write

and hence

Note that the definitions ofa andb shown here differ from
those given by Gower28 and by Ellis et al.;29 they are,
however, the definitions that have been more commonly used
in the chemical information literature. The various quantities
above can also be expressed in set-theoretic notation, if we
defineøA as the set of all elementsxjA in vectorXA whose
value is 1 (the “on” bits) andøB as the set of all elements
xjB in vectorXB whose value is 1. Then

and, as a corollary to the above, the number of bits “on” in
at least one of the molecules is given by

Given the above definitions, Table 2 describes a number of
similarity and distance coefficients commonly used in
chemical information, with expressions for calculating them
for continuous-variable or dichotomous attributes or using
set notation.

Both the Hamming distance and the Euclidean distance
are examples of a more general class of distance metrics
called Minkowski distances which are given by the general
formula

where t ) 1 for the Hamming distance andt ) 2 for the
Euclidean distance.

A fundamental difference between the Hamming and
Euclidean distances, on one hand, and the Tanimoto, Dice,
and Cosine coefficients, on the other, is that the former
effectively consider a common absence of attributes (or
common low values in the case of continuous variables) as
evidence of similarity, whereas the latter do not. This is a
basic philosophical argument, which has been much dis-
cussed in the literature. In the context of numerical
taxonomy, Sokal and Sneath31 have commented:

“The absence of wings ... among a group of distantly
related organisms (such as a camel, a horse, and a nematode)
would surely be an absurd indication of affinity. Yet a
positive character such as the presence of wings...could
mislead equally...for a similar heterogeneous assemblage (for
example, bat, heron, and dragonfly).”

In the chemical context, James et al.32 have suggested that
Hamming and Euclidean distances are useful only for
“relative” distance comparisons (i.e., the distance of two
molecules to the same target) but not for “absolute”
comparisons (between two independent pairs of molecules),
for which they prefer the Tanimoto coefficient. Nevertheless,
Euclidean distance comparisons form the basis of Ward’s
hierarchical agglomerative clustering method,33 which has
been shown to be particularly effective on the basis of
empirical studies and which is discussed later in this paper.
It is also worth noting that a number of familiar chemical
concepts are essentially negatively defined; for example, the
common feature of carbocycles is the lack of heteroatoms
and the common feature of aliphatic systems is the lack of
aromaticity.

A further fundamental difference is that the association
coefficients involve a normalization factor that helps to lessen
molecular size effects in some cases. Thus, in a similarity
search using fragment bit-strings or fingerprints, a large
molecule in the database is a priori much more likely to have

a ) ∑
j)1

j)n

xjA number of bits “on” in A

b ) ∑
j)1

j)n

xjB number of bits “on” in B

c ) ∑
j)1

j)n

xjAxjB number of bits “on” in both A and B

d ) ∑
j)1

j)n

(1 - xjA - xjB + xjAxjB)

number of bits “off” in both A and B

n ) a + b - c + d

a ) |øA|
b ) |øB|

c ) |øA ∩ øB|
d ) n - |øA ∪ øB|

a + b - c ) |øA ∪ øB|

DA,B ) [∑
j)1

j)n

(|xjA - xjB|)t]1/t
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Table 2. Descriptions of Some Distance Metrics and Similarity Coefficients Commonly Used in Chemical Informationa

Hamming Distance

other names Manhattan distance
City-Block distance
normalized complement for dichotomous data called simple matching coefficient

formula for continuous variables

DA,B ) ∑
j)1

j)n

|xjA - xjB|
formula for dichotomous variables DA,B ) a + b - 2c
set-theoretic definition DA,B ) |øA ∪ øB| - |øA ∩ øB|
range ∞ to 0 (continuous),n to 0 (dichotomous)
metric properties obeys all four metric properties
notes equivalent to the squared Euclidean distance for dichotomous variables

can be normalized to the range 1 to 0 if the values of all attributes are normalized to this range
and the result divided byn

Euclidean Distance
other names none
formula for continuous variables

DA,B ) [∑
j)1

j)n

(xjA - xjB)2]1/2

formula for dichotomous variables DA,B ) [a + b - 2c]1/2

set-theoretic definition DA,B ) [|øA ∪ øB| - |øA ∩ øB|]1/2

range ∞ to 0 (continuous),n to 0 (dichotomous)
metric properties obeys all four metric properties
notes frequently used as its square (with which it is, of course, monotonic), which avoids the need to

take the square root in the calculation
monotonic with the Hamming distance in all cases (and its square is equivalent to the Hamming

distance for dichotomous variables)
can be normalized to the range 1 to 0 if the values of all attributes are normalized to this range and

the result divided byn

Soergel Distance
other names none
formula for continuous variables

DA,B ) [∑
j)1

j)n

|xjA - xjB|]/[∑
j)1

j)n

max(xjA, xjB)]

formula for dichotomous variables DA,B ) 1 - c/[a + b - c] ) [a + b - 2c]/[a + b - c]
set-theoretic definition DA,B ) [|øA ∪ øB| - |øA ∩ øB|]/|øA ∪ øB|
range 1 to 0
metric properties obeys all four metric properties provided all attributes have nonnegative values
notes for dichotomous variables only, the Soergel distance is identical to the complement of the

Tanimoto coefficient

Tanimoto Coefficient
other names Jaccard coefficient
formula for continuous variables

SA,B ) [∑
j)1

j)n

xjAxjB]/[∑
j)1

j)n

(xjA)2 + ∑
j)1

j)n

(xjB)2 - ∑
j)1

j)n

xjAxjB]

formula for dichotomous variables SA,B ) c/[a + b - c]
set-theoretic definition SA,B ) |øA ∩ øB|/|øA ∪ øB|
range -0.333 to+1 (continuous), 0 to+1 (dichotomous)
metric properties complement does not obey the triangular inequality in general, though does obey it if dichotomous

variables are used
notes monotonic with the Dice coefficient

complement of the dichotomous version is identical to the Soergel distance

Dice Coefficient
other names Czekanowski coefficient

Sørenson coefficient
essentially equivalent to the Hodgkin index for overlap of electron density functions

formula for continuous variables

SA,B ) [2∑
j)1

j)n

xjAxjB]/[∑
j)1

j)n

(xjA)2 + ∑
j)1

j)n

(xjB)2]

formula for dichotomous variables SA,B ) 2c/[a + b]
set-theoretic definition SA,B ) 2|øA ∩ øB|/[|øA| + |øB|]
range -1 to +1 (continuous), 0 to+1 (dichotomous)
metric properties complement does not obey the triangular inequality
notes monotonic with the Tanimoto coefficient
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bits in common with the target structure than is a small
molecule, and it is thus appropriate to include some degree
of size normalization in the coefficient to avoid a bias in
the nearest neighbors toward the largest database molecules.
The converse of this problem can arise in diversity applica-
tions, for example in dissimilarity-based compound selection
procedures where one seeks to identify database subsets for
which the constituent molecules are as dissimilar as pos-
sible.34 Small molecules are likely to have few bits set in a
fingerprint: since the Tanimoto coefficient, for example, does
not take account of a common absence of features and since
c e min(a,b) (in the coefficient’s expression in Table 2),
low-similarity (and thus high-dissimilarity) values will be
obtained with small molecules, thus possibly biasing the size
distribution in the final subset that is selected. A solution
adopted at Pharmacia and Upjohn35 is to use a composite
coefficient essentially involving both the Tanimoto coef-
ficient and the simple matching coefficient (the complement
of the normalized Hamming distance).

Following earlier work by Adamson and Bush,36 Willett
and Winterman37 compared the performance of a range of
similarity and distance coefficients by the extent to which
they obeyed thesimilar property principleof Johnson and
Maggiora;23 specifically, they assessed the effectiveness of
a coefficient by the extent to which it was able to predict
correctly a compound’s measured property or activity value
as the value of the most similar compound in the same
dataset. In this study, the Tanimoto and Cosine coefficients
performed rather better than the Hamming and Euclidean
distance measures, and in an operational system implemented
subsequently,9 the Tanimoto coefficient was preferred, partly
on the basis of a subjective evaluation of the similarity search
rankings it produced and partly because its calculation does
not involve a square root, making it faster. Since then, the
Tanimoto coefficient has been the measure of choice for
fragment-based chemical similarity work, though the Ham-
ming distance (equivalent to the squared Euclidean distance
for binary data) retains its adherents and the Euclidean
distance remains the most popular measure for continuous
data.

Other criteria can be used to evaluate similarity coef-
ficients. For example, Cheng et al.38 have described four
association coefficients for assessing the degree of relatedness
between pairs of different similarity coefficients. Their
study, which again draws upon the similar property principle,
was used to compare different coefficients based on different
descriptor sets (Euclidean distances with topological indexes

and Tanimoto coefficient with 2D bit-strings), but the same
principles could also be applied to coefficients based on the
same descriptors. Computational efficiency can also merit
consideration as a basis for comparison. For example, the
Cosine coefficient allows the calculation of the average
similarity between all pairs of compounds in two disjoint
datasets extremely rapidly, something that is not possible
with the Tanimoto coefficient30 and that may be necessary
for some similarity applications. Finally, the behavior of a
coefficient over its range of possible values may give
guidance as to its suitability for use in a particular application
domain, as evidenced by the continuing discussion as to
which similarity coefficient is most appropriate for the
calculation of field-based similarities.26,39-42

Bradshaw43 has recently drawn attention to the use of
asymmetric similarity coefficients (in whichSA,B * SB,A)
based on the ideas of Tversky.44 The general form for
Tversky similarity is defined for binary data as follows:

whereR andâ are user-defined constants. IfR andâ are
equal, the resulting similarity coefficient is symmetric, and
in the case of certain values, the expression reduces to one
of the commonly known coefficients: the Tanimoto coef-
ficient whenR ) â ) 1 and the Dice coefficient whenR )
â ) 1/2. If R andâ are different, the resulting coefficient is
asymmetric, and whenR ) 1 andâ ) 0 yieldsSA,B ) c/a,
which can be interpreted as the “fraction of A” which it has
in common with B; the coefficient will become equal to 1
when all the features of A are also in Bsi.e., when A is
(within the constraints of a fragment-based representation)
a substructure of B, and features of B which do not occur in
A are irrelevant to the similarity value. This type of
subsimilarity expression has also been derived by Maggiora
et al.45 using an approach based in fuzzy-set theory and
provides an alternative subsimilarity measure to the MCS
described by Hagadone12 and discussed in section 2.

In conclusion, we reiterate the fact that the discussion here
has concentrated on those coefficients, and their close
relations, that have been most extensively used, thus far, for
chemical applications. There are many others that have been
discussed in the literature of, e.g., multivariate statistics,28

information retrieval,29 and numerical taxonomy,31 and it
must not be assumed that there is any single “best”
coefficient even if we restrict attention to the domain of

Table 2. (Continued)

Cosine Coefficient

other names Ochiai coefficient
essentially equivalent to the Carbo index for overlap of electron density functions

formula for continuous variables
SA,B ) [∑

j)1

j)n

xjAxjB]/[∑
j)1

j)n

(xjA)2∑
j)1

j)n

(xjB)2]1/2

formula for dichotomous variablesSA,B ) c/[ab]1/2

set-theoretic definition SA,B ) |øA ∩ øB|/[|øA||øB|]1/2

range -1 to +1 (continuous), 0 to+1 (dichotomous)
metric properties complement does not obey the triangular inequality
notes highly correlated with the Tanimoto coefficient, though not strictly monotonic with it

a Definitions of the symbols used are shown in Table 1. Note that the negative lower-bound values for the three association coefficients apply
only if negative attribute values are possible.

SA,B ) c
R(a - c) + â(b - c) + c
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chemical structure handling. Indeed, as noted by Jones and
Curtice46 in a discussion of the association between indexing
terms in information retrieval systems:

“What is annoying is that no clear-cut criterion for choice
among the alternatives has emerged. As a result, few
candidate measures have been permanently dismissed from
consideration, and a rather large set of formulas remains
available.”

There is hence a continuing need for both empirical and
analytical comparisons of the available coefficients to ensure
that the most appropriate one(s) are employed in any specific
similarity-based system.

4. STRUCTURAL REPRESENTATIONS FOR
SIMILARITY SEARCHING

Similarity searching in large chemical databases needs
representations of the molecules that are botheffectiVe, i.e.,
can differentiate between molecules that are different, and
efficient, i.e., quick to calculate, in operation. There is a
general conflict between these two requirements in that the
most effective methods of representation tend to be the least
efficient to calculate, andVice Versa, so a suitable compro-
mise needs to be made. For instance, quantum-mechanical
descriptions, such as the electron probability density function
described by Carbo and Calabuig,47 take too long to calculate
whereas, at the other extreme, simple atom and bond counts
are generally too trivial to discriminate between many
molecules. In the middle lie descriptors based on 2D and
3D substructural fragments or properties. These are the ones
that are currently most commonly used for similarity
searching and that form the principal focus of the subsequent
discussion. This overview is necessarily brief; further details
are given in the recent review by Brown.48

The representation of molecules by descriptors involves
the generation of suitable descriptors and, if desired, the
selection of a subset of them and then the encoding of the
chosen descriptors in a form that will enable similarity
calculation between pairs of representations. Many of the
descriptors are described in the literature along with a
particular encoding method; however, the two are largely
independent, and it is usually possible to encode a given
descriptor in a variety of ways. We have thus deliberately
separated descriptor selection and descriptor encoding in this
section to highlight the two stages.

Descriptor Selection. There is an infinite variety of
potential descriptors, so descriptor selection is necessary as
an exercise in data reduction to select those most appropriate
to a given application. The following subsections will
examine examples of counts, 2D-fragment, 3D-fragment, and
physicochemical property descriptors, topological indices,
whole molecule comparisons, and the issue of descriptor
choice.

The simplest descriptors are counts of individual atoms,
bonds, degrees of connectivity, etc. These can be extended
to counts of rings, pharmacophore points, and any other
feature that can be represented as a single node or arc in the
graph or reduced graph representation of the molecule.

Two-dimensional fragment descriptors were first studied
in detail by Lynch and co-workers (see, e.g., ref 49), who
investigated the use of various types of atom-centered, bond-
centered, and ring-centered fragments for substructure search-

ing. This work led to the widespread adoption of augmented
atom, atom sequence and ring fragments in substructure
search systems, e.g., the fragments in CAS Online.16 Some
typical 2D fragment definitions are shown in Figure 1.
Augmented atoms comprise a central atom with the neigh-
boring attached atoms and intervening bonds. Atom se-
quences are linear sequences of a given number of connected
atoms, with their intervening bonds. Ring fragments can
be of several different types, for instance thering sequence
(atom sequence round a ring) andring fusion sequence(ring-
connectivity counts round a ring) fragments. Other fragment
definitions, originally developed at Lederle Laboratories, that
have become popular for similarity searching are theatom
pair8 and topological torsion50 fragments. Atom pairs
comprise a pair of atom types and the intervening distance
between them, in terms of the shortest bond-by-bond path
between them. The atom type describes the elemental type,
the number of non-hydrogen attachments, and the number
of π-bonds. The topological torsion fragment comprises a
linear sequence of four connected atoms, with each atom
type described in the same way as for atom pairs.

Workers at CAS found that the use of specific elemental
and bond types for atoms and bonds can be too specific for
substructure searching, and generalized forms of these
fragments are thus often used (and similarly so for similarity
searching). For instance, atoms can be generalized to groups
such as their group in the periodic table, and bonds to ring
or chain, allowing the specification of many combinations
of generalized atoms and bonds, and similar definitions can
be used for similarity searching. The generalization of atom
pairs and topological torsions by use of physicochemical
atom types is mentioned later.

An alternative to the algorithmically generated descriptors
described above is to define and to search for particular
functional groups, which may be expressed in specific or
general terms. Once defined, the functional groups can be
detected by scanning the connection tables for instances of
them. A more efficient way is to use string-searching of a
linear representation of the molecule, for instance by defining
the functional groups in terms of SMARTS strings and using
them to search SMILES representations.51

As noted in section 2, 2D fragment descriptors rapidly
established themselves as the basis for operational similarity
searching, and it was some years before attempts were made
to develop fragments for 3D similarity searching: some
examples of 3D fragment descriptors are shown in Figure
2. Many of the 2D fragments that can be generated from a
2D connection table have equivalents in the 3D fragments
that can be generated from a 3D connection table. However,

Figure 1. Example 2D-fragment descriptors.
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there is much less consensus in the 3D area as to which are
the best descriptors to use; moreover, the variety of available
descriptors is greater, and new fragment types continue to
be developed. Due to the fully connected nature of a 3D
connection table, and the flexibility of 3D structures, the
number of 3D fragments generated for a given class can be
much larger than for the 2D equivalent, and the generation
process can be more time-consuming.

Willett and co-workers have described both distance-
based52 and angle-based53 descriptors for the calculation of
3D similarity. The simplest of the distance-based descriptors
is the distance distributionin which each distance in a
molecule increments a count in an associated distance-range
bin. The resultant frequency distribution of distances is used
to represent the molecule. To include elemental types,
indiVidual-distancedescriptors comprise a pair of atoms and
the interatomic distance between them. The angle-based
descriptors are based on generalized valence angles and
torsion angles, in which the atoms comprising the angle do
not need to be directly bonded to each other. The distance-
based descriptor described by Bemis and Kuntz54 is an
extension of the distance-distribution descriptor and uses the
distances between triplets of atoms. For each triplet in a
molecule, the three interatomic distances are squared and
summed to give a single value, and the distribution of these
values is used to describe the molecule. Closely related to
this is theatom tripletdescriptor of Nilakantan et al.55 Here,
the three distances between the three atoms comprising the
triplet are sorted into increasing length; the first is left alone,
the second is multiplied by 103 and the third by 106, and
then they are summed to produce a single integer value.

The group at Merck have described 3D variants of the
atom pair, referred to asgeometric atom pairsandgeometric
binding property pairs.56 In geometric atom pairs, the atom
types are defined as for standard atom pairs, but the distance
between them is the through-space distance rather than the
through-bond distance. In geometric binding property pairs,
the distance is through-space distance and the atom type is

generalized to one of seven binding classes (cation, anion,
H-bond donor, H-bond acceptor, polar, hydrophobic, and
other). Similarly, the group at Abbott Laboratories has
compared a wide variety of descriptors51 including two in-
house descriptors based onpotential pharmacophore points
(PPPs). Five points are defined: H-bond donor, H-bond
acceptor, positively charged, negatively charged, and hy-
drophobic. All atoms of the molecule are analyzed to see
whether they can be classed potentially as one of the point
types. The descriptors arePPP-pairsand PPP-triangles.
PPP-pairs are similar to geometric atom pairs, with the atom
types represented by PPP types. PPP-triangles are triplets
of PPPs and their associated distances (categorized into bin
ranges).

Eight classes of 3D descriptors have been investigated at
CAS.13 The atom pair distanceand three-bonded atoms
angleare generalized distance-distribution and valence angle
descriptors, respectively (with atom types carbon, hetero, and
any). Thethree atoms and one bondVectorangle descriptor
is a hybrid atom triangle, and thefour-bonded atomsand
four atoms and two bondVectorsangle are hybrid topological
torsion descriptors, each with selected angle information
added to the generalized atom type information. The “atom
triangles” are atom triangles with generalized atom types,
and theatom triangle three-slotandatom triangle fiVe-slot
are reduced and generalized atom triangle descriptors using
two atoms and one or three of the interatomic distances,
respectively. The detailed search results provided by Fisan-
ick et al.13 demonstrate that these triangle-based features
provide a simple and effective mechanism for similarity
searching based on size and shape.

The CAS workers have also investigated the use of
calculated molecular properties.13 Twenty whole-molecule
properties were tested, such as ClogP, molar refractivity,
ionization potential, HOMO, and LUMO. The resultant
values can be used directly as descriptors. In addition,
several localized properties were included, such as atomic
electron densities and eigenvalues for molecular orbitals, with
the resultant values being binned into ranges to provide sets
of descriptors for the whole molecule. A subset of the global
properties subsequently formed the basis for the similarity
measures used in a comparison of various clustering meth-
ods.57 Similar work has been reported by Kearsley et al.,58

who have generalized the atom pair and topological torsion
descriptors by replacing the atom types by physicochemical
properties.58 Binding property pairsandbinding property
torsions have the atom types replaced by one of seven
binding property groups (cations, anions, H-donor, H-
acceptor, polar, hydrophobic, and other). Hydrophobic pairs
and torsions, and charge pairs and torsions have the continu-
ous values split into seven overlapping bins. Unlike most
descriptors, the charge pairs and torsions consider hydrogen
atoms as atoms.

Topological indices are similar to physicochemical proper-
ties in that they characterize some aspect of molecular data
by a single value. Very many different topological indices
have been, and continue to be, described in the quantitative
structure-activity relationship (QSAR) literature, but most
are highly correlated. One of the few published uses of
topological indices for similarity calculation in large data-
bases is that by Basak et al.,59 who generated 90 topological
indices, encoding shape, size, bonding pattern, and branching

Figure 2. Example 3D-fragment descriptors.
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pattern. Principal components analysis of these indices
identified 10 principal components that were then used as
the descriptors for the similarity analysis. Topological
indices are often used in conjunction with other descriptors,
as exemplified by work at Rhone-Poulenc Rorer.60 This
study of 49 molecular properties (of which just over half
were topological indices and a quarter were counts) identified
6 descriptors that were relatively uncorrelated and that
covered steric, electronic, and hydrophobic aspects: the
selected descriptors comprised three topological indices
(flexibility, normalized electrotopological, and aromatic
density), two fragment-based properties (H-donor and H-
acceptor), and one physicochemical property (ClogP).

With the increase in computing power and development
of more efficient algorithms, there are now several relatively
efficient ways of mapping whole, or large parts, of molecules
onto each other for comparison.

The superpositioning by permutations (SPERM) method
has been developed at Organon61 following work by Dean
et al.62 A molecule is placed at the center of a tessellated
icosahedron, the vertices of which denote points at which
some chosen physical property is calculated. In the case of
shape similarity, the property at each vertex is either the
minimum distance or the radial distance from the vertex to
the molecule’s surface. Several optimizations have been
developed to enable alignment of pairs of molecules in
reasonable time and then calculation of the similarity between
the values at each point pair. Dean’s group has described a
range of methods for calculating 3D similarities;63 thus far,
only the tessellated icosahedron approach has been applied
to database searching, but it is likely that improvements in
computing speeds will enable others of his methods to be
used in this context in the future.

Theatom mappingmethod52 compares the 3D environment
of each atom in one molecule with the 3D environment of
each atom in a second molecule. The resultant list of
interatomic similarities is used to identify pairs of geo-
metrically similar atoms, which are used as descriptors in
the calculation of the overall intermolecular similarity. The
atom mapping method was compared with an MCS proce-
dure, where the 3D MCS was defined to be the largest set
of atoms, in common between two molecules, that have
matching interatomic distances (within a given tolerance).
Comparative experiments using the similar property principle
suggested that the atom mapping and MCS procedures were
of comparable effectiveness; however, the former is far more
efficient to calculate and formed the subsequent basis for a
3D similarity searching system developed at Zeneca Agro-
chemicals.64

Given the wide variety of descriptor types available, it is
necessary to select the most appropriate structural representa-
tion for a given application. A recent, detailed comparative
study is reported by Brown and Martin,65 who have analyzed
various descriptors (and encoding methods) to find those
most relevant to ligand-receptor binding. Two-dimensional
structural descriptors contain a lot of information about the
physical properties and reactivity of a molecule and are quick
to calculate. Augmented atoms are very localized, atom
sequences are less so, and atom pairs span the whole of a
2D structure. Ring descriptors are essential for cyclic
structures, and topological torsions correlate well with 3D
torsions except in highly folded molecules. Physical proper-

ties and topological indices can be useful representations of
hydrophobic and electrostatic interactions. Three-dimen-
sional shape descriptors can give useful information about
dispersion and steric interactions. The larger 3D descriptors
tend to be the most effective, but the flexibility of many
molecules can increase the time required to generate 3D
descriptors and/or can also decrease their effectiveness.
Generalization of atom types from specific elements to
groups or properties can help to reveal broader similarities.
Overall, the trend is to use combined descriptors or descriptor
sets which contain many different descriptor types, at many
different levels of generalization.

Descriptor Encoding. Having discussed some of the
types of descriptor that are available, we now describe how
they can be encoded to enable similarity calculations to be
carried out.

The representation that is overwhelmingly used as a basis
for similarity calculations in large databases is the fixed-
length bit-string. This contains a fixed number of bits in
which each bit can represent the absence (0) or presence (1)
of some feature, either on its own or in conjunction with
other bits in the bit-string. The binary bit-string is usually
used for 2D and 3D fragment descriptors. Discrete variables,
with more than two values, can be represented in the binary
bit-string by using a bit for each possible value or for given
ranges of values. Continuous variables can be represented
by defining ranges of values and then assigning a bit to each
range, a process known asbinning. The ranges covered by
each bin can be separate or be overlapping, as is done, e.g.,
in the geometric atom pair descriptors of Sheridan et al.56

The ranges can also be equidistant, equifrequent, or user-/
application-defined. Equidistant ranges, as the name implies,
have the same interval. Equifrequent ranges have different
intervals, each interval being derived from examination of
the frequency distribution of the descriptor being repre-
sented56 or an equation of the distribution.51 For specialized
applications, where distinct peaks in the distribution are
known, the user may define the bin ranges manually.

Bit-strings can be directly, dictionary, or hash assigned,
as described below. Examples of alternatives (dataprints and
distribution-comparisons) applicable to certain descriptor
types are also mentioned.

Descriptors with fixed limits (e.g. number, range of sizes,
elemental composition) can be directly assigned to positions
in a bit-string, with offsets being calculated to assign different
groups or different descriptors to separate areas of the bit-
string. For example, the ring descriptors devised by Downs
et al.66 were directly assigned to the end of a bit-string, offset
to avoid the beginning (which was reserved for dictionary-
assigned augmented atom and atom sequence descriptors).
The diverse-property derived (DPD) code developed at
Rhone-Poulenc Rorer60 could also be directly assigned. The
DPD contains the six descriptors described earlier, each split
into a number of classes (from 2 to 4) giving a total of 17
bit positions (432 combinations).

Systems based on dictionary-assigned bit-strings employ
a dictionary that specifies correspondences between particular
functional groups or fragments and bit positions in a bit-
string, with each entry (structural key) in the dictionary being
assigned a bit position (screen number). Dictionaries of
functional groups tend to be fairly small, so all groups can
be listed in the dictionary and assigned to a short bit-string.
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However, analysis of a database to generate several different
fragment types typically produces many tens or hundreds of
thousands of distinct fragments, with a highly skewed
distribution (i.e., a few fragments occur very frequently and
many occur very infrequently). Methods to reduce this
number to fit into a fixed-length bit-string of a few thousand
bits, while retaining those fragments that act as the best
descriptors, include the following: statistical analysis of the
fragment frequencies to remove very frequent/infrequent
fragments (for substructure searching equifrequent occurrence
of fragments gives better screenout; for similarity calculations
frequency is less important); generalization of specific
fragments to less specific forms which cover many different,
but related, specific fragments; assignment of the same screen
number to several different, but related (e.g., by co-
occurrence or composition) fragments (co-occurrence is
particularly relevant for similarity calculations since it biases
the measure toward that feature).

Development of the CAS ONLINE Screen Dictionary used
such methods to create a dictionary suitable for substructure
searching.16 Careful selection of very generalized fragments
can give good representations for similarity calculations using
relatively few bits; for example, Brown and Martin found
that effective searches could be achieved using a small subset
of MDL Information Systems’ MACCS keys.51 However,
selection of appropriate fragments to include in a dictionary
is tedious, at best; features not represented in the dictionary
can never be reflected in the similarity measure, and the
resulting structural resemblances may be strongly database-
dependent.

Rather than selecting a subset of fragments for inclusion
in a dictionary, so that the number of screens is reduced to
the same as the length of the bit-string, hash-assigned bit-
strings are created by fitting all of the fragments into the
bit-string. This can be achieved by hashing the fragment to
generate one or more integers that fall within the length, or
a given subrange of the length, of the bit-string (fingerprint).
The more integers generated by the hash function, the more
unique patterns can be superimposed on the bit-string, so
the more fragments can be included. This fingerprint
approach is used, for example, by Daylight Chemical
Information Systems Inc. and Tripos Inc. for both substruc-
ture searching and similarity searching. However, overlaps
between patterns can lead to many patterns being overlaid
by other patterns, with a consequent loss of information. For
similarity calculations this can give rise to false similarities
since common bits in two bit-strings may have been set by
completely unrelated fragments. Adding all fragments can
also give problems by including many co-occurring frag-
ments, by including large numbers of fragments that are
unrelated to the similarity relationships that the measure is
seeking to quantify and by swamping the effects of those
fewer fragments that are so related. These problems are
exacerbated by the technique of folding the bit-strings to
condense the information further.

Physicochemical property and topological index descrip-
tors are usually represented using a fixed-length string of
real numbers (sometimes referred to as adataprint). Datap-
rints typically have far fewer elements than bit-strings, and
each element has a value. Dataprints thus describe molecular
space by a full matrix rather than the sparse matrix
description given by bit-strings. To avoid biases caused by

differences in magnitude of the descriptors (particularly
physicochemical properties), it is usual to normalize each
element of a dataprint by the range or standard deviation of
that element throughout the dataset.26 The frequency dis-
tribution of many descriptors (particularly 3D) can also be
used directly as an encoding of the descriptors for similarity
calculation (see, e.g., refs 52 and 55). If the distributions
have the same number of elements, then a similarity
coefficient or distance can be calculated in much the same
way as that for dataprints.

Finally, descriptors such as those developed for whole
molecule comparisons are often already encoded in a form
suitable for similarity calculations, so no further encoding
is necessary, e.g., the similarity measures based on surface
comparisons that are discussed by Dean and Perkins.63

5. APPLICATIONS OF SIMILARITY SEARCHING

There are many applications of the similarity measures
we have described above, including database clustering,
docking searches, reaction similarity searching, and the
analysis of molecular diversity. Here, we give just a few
leading references to work in the first three of these domains,
with more detailed discussions being provided in the
literature cited; molecular diversity is discussed elsewhere
in this special issue ofJ. Chem. Inf. Comput. Sci.67

Cluster analysis, or clustering, is the process of subdividing
a group of objects (chemical molecules in the present context)
into groups, or clusters, of objects that exhibit a high degree
of both intracluster similarity and intercluster dissimilar-
ity.31,68 It is thus possible to obtain an overview of the range
of structural types present within a dataset by selecting one
(or some small number) of the molecules from each of the
clusters resulting from the application of an appropriate
clustering method to that dataset. The representative mol-
ecule for each cluster is either selected at random or selected
as being the closest to the center of that cluster. These
representative compounds can be used to maximize the
efficiency of random screening in lead-discovery programs:
if a representative compound proves active when tested in
the bioassay of interest, then it is appropriate to assay the
other compounds in its cluster since these may also exhibit
the activity of interest; alternatively, if it proves inactive,
then attention should be transferred to another cluster.69,70

Very many different clustering methods have been de-
scribed in the literature. An early study of over 30 hierarchic
and nonhierarchic methods22 showed that the best results
were obtained from Ward’s hierarchical-agglomerative
method,33 with the nonhierarchical nearest neighbor method
of Jarvis and Patrick71 performing almost as well. In the
mid-1980s, when these comparative experiments were carried
out, computer limitations (in terms of both raw CPU speeds
and the clustering algorithms available) meant that Ward’s
method could not be applied to databases of substantial size.
The Jarvis-Patrick method was thus rapidly adopted as the
clustering method of choice in commercial chemical database
software, not only to select compounds for random screening
but also to cluster the outputs of substructure searches that
retrieve very large numbers of molecules, thus providing the
searcher with an overview of the structural classes that
contain the substructure of interest.72 However, the method
does have limitations (see, e.g., ref 73), and subsequent
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comparisons51,57,65 have reaffirmed the general superiority
of Ward’s method. The availability of improved computer
hardware and of the efficientreciprocal nearest neighbors
algorithm74 means that sequential implementations of this
method can now be used on databases containing up to
perhaps a quarter of a million structures in an acceptable
amount of time; larger datasets, however, still require use
of the Jarvis-Patrick method or of an appropriate parallel
machine. Thus far, the great majority of clustering studies
have used the simple fragment-based similarity measures
described in the second section of this paper; however, any
measure could be used if it could be calculated sufficiently
rapidly to encompass the inherent quadratic time complexity
of the Jarvis-Patrick and Ward methods.

A similarity search finds database structures that are similar
to the target structure; a docking search finds database
structures that arecomplementaryto the binding site of a
3D protein structure and that might thus be putative ligands
for it.75,76 The first program for this purpose, called DOCK,77

described the geometries of ligands and binding sites by sets
of spheres, and the shape similarity of the ligand to the site
was then estimated by the extent to which the corresponding
sets of spheres could be overlapped by means of an
approximate clique-detection procedure. More recent ver-
sions of DOCK augment these steric matching-scores with
electrostatic and molecular-mechanics interaction energies
for the ligand-receptor complex and consider the use of
atomic hydrophobicity descriptors in scoring docked orienta-
tions. Database searching is effected by calculating the
degree of fit for each database structure in turn and then
ranking the molecules in decreasing order of the calculated
scores. There have been many reports in the literature that
describe this use of DOCK to support the design of novel
inhibitors,78 and its success has spurred the development of
many other docking programs, such as CLIX79 and FLOG.80

The extension of docking programs so that they can handle
ligand flexibility (as well as, ideally, protein flexibility) is
one of the two main problems facing workers on docking81-83

(as well as 3D similarity searching, as discussed in section
6 below). The other problem is the identification of scoring
functions that can be calculated sufficiently rapidly to permit
database searching but that are, at the same time, sufficiently
accurate to provide a reliable basis for prioritizing the
database structures for biological testing.76,84

Database systems for the handling of chemical reactions
did not become widely available until the mid-1980s,85

almost two decades after the implementation of the first in-
house database systems for chemical molecules. Early
systems permitted structure and substructure searches to be
carried out on the reacting molecules and/or the reaction
centers, i.e., those parts of the reacting molecules where the
substructural transformation had taken place, but it was not
long before facilities were introduced for reaction similarity
searching,86 in which similarities are calculated between pairs
of reactions rather than between pairs of molecules as in a
conventional similarity searching system. An early example
of a reaction similarity measure was included in the REACCS
software package.21,87 This used the atom pair fragments
originally developed at Lederle Laboratories8 to characterize
both reacting molecules and reaction sites and allowed not
only conventional similarity searching but also subsimilarity
searching and supersimilarity searching (as discussed in

section 2), which provide “fuzzy” versions of substructure
and superstructure searching, respectively. Grethe and
Hounshell provide several examples of the use of the various
types of search options and emphasize the complementary
natures of the resulting outputs.21 A related task is that of
similarity searching to support computer-aided synthesis
design programs.88 Here, the similarity of a molecule (either
the intended final product of the synthesis or an intermediate
in the synthetic tree) to the molecules in a database of readily
available starting materials can help to identify low-cost,
synthetically feasible reaction pathways, with the similarity
measure typically being based on an MCS definition of some
sort.89-91

6. CONCLUSIONS

The previous sections of this paper have reviewed the
origins and current status of similarity searching in databases
of 2D and 3D chemical structures. Although we have
discussed a large number of ways in which the similarity
between a pair of molecules can be quantified, it must be
emphasized that we have restricted our attention to those
that can be computed sufficiently rapidly to enable them to
be used for searching databases of nontrivial size. Many
other types of similarity measure have been reported in the
literature but are only applicable, given current hardware and
software technology, when small numbers of similarities need
to be calculated;23,24the development of fast implementations
for such measures is one of the main challenges facing
workers in the field.6 The challenge is particularly pressing
in the context of developing similarity measures that can be
used to search databases of flexible 3D structures. The past
few years have seen much work on the implementation of
3D substructure searching,2,5 and techniques that have been
developed there are now starting to find application in the
similarity domain. Specifically, attempts are being made to
encompass conformational flexibility by the use of multiple
low-energy conformations to represent each of the flexible
molecules that are to be compared or by the exploration of
their conformational spaces during the comparison opera-
tions. Examples of these two approaches are exemplified
by Perkins et al.92 and by Thorner et al.,93 who use simulated
annealing and genetic algorithm approaches, respectively,
to calculate measures of steric and electrostatic similarity.

The need for improved algorithmic techniques is also
apparent, even if attention is restricted to 2D structural
representations. This is because of the vastly increased file
sizes that need to be processed as a result of the use that is
being made ofVirtual databases, i.e., notional sets of
molecules such as those represented by a combinatorial
library specification. Two radically different approaches
suggest themselves. The simpler approach is to enhance the
efficiency of current nearest neighbor algorithms so that they
permit rapid searching of even the largest libraries when they
are fully enumerated: a useful review of such algorithms is
provided by Murtagh.74,94 Alternatively, it may be possible
to develop representational methods that can describe all of
the molecules in a virtual database in such a manner that
they can be searched en masse, without the need for explicit
enumeration: some initial work in this area has been reported
by Barnard et al.95

A further challenge is to develop robust methodologies
for the quantitative evaluation and comparison of the
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effectiveness of different similarity measures (as against their
efficiency, which can be determined both by theoretical
algorithmic analysis and by timed implementations). This
is normally done by means of simulated property prediction
experiments based on the similar property principle of
Johnson and Maggiora,21 as exemplified by the extended
investigations of different representations reported by Brown
and Martin.51,65 The growing number of similarity measures
available means that such comparative investigations will
become increasingly important, and their execution will be
facilitated by the development of standard datasets containing
structural and biological data for nontrivial numbers of
compounds. The steroids dataset of Cramer et al.96 has
become a de facto standard for validating new QSAR
methods, and recent papers in the literature suggest that the
World Drug Index97 and NCI AIDS98 databases are starting
to play a similar role for validating new similarity and
diversity methods; this trend is to be applauded since it serves
to facilitate the comparison of the results obtained by
different research groups and, consequently, to progress the
entire field.

The aim of a comparative study is generally to identify
the most effective method(s) from among those that are being
compared. An alternative approach recognizes that different
similarity measures reflect different types of molecular
characteristic, and the multifaceted nature of biological
activity would thus suggest that no single measure will be
optimal for all sorts of similarity search that one might wish
to carry out. Instead, one can use several different similarity
measures for searching, as advocated by Fisanick et al. in
their work with different subsets of the CAS Online screen
dictionary,13 or even combine them into a new integrated
measure. Examples of this latter approach are discussed by
Sheridan et al.,56 by Kearsley et al.,58 and by Ginn et al.,99

who have all combined the rankings produced by different
measures to give a single resultant ranking, an example of
the more general procedure known asdata fusion[100]. We
expect that such approaches will become increasingly at-
tractive as further new similarity measures continue to be
developed that are sufficiently rapid for use in a database
searching context. For example, Thorner et al.93 have
recently described a system for field-based similarity search-
ing that enables the identification of database molecules with
electrostatic fields similar to those of the target structure;
drawing on previous work by Moreau and Broto101 on the
use of autocorrelation vectors for similarity calculations,
Bauknecht et al.102 discuss a similarity searching system in
which the vectors encode various electronic characteristics
of the atoms in a molecule; and Robinson et al.103 describe
a representation of the 3D structure of a molecule that is
derived from its 2D structure and that is processed extremely
rapidly using techniques from digital image processing.

In conclusion, similarity searching has rapidly grown in
importance since its introduction just over a decade ago and
now plays an important role in lead-discovery programs in
the pharmaceutical and agrochemical industries. Its impor-
tance can only increase further as 3D-based similarity
measures become established, complementing the 2D simi-
larity measures in current chemical information systems, and
as new applications are investigated, e.g., the use of similarity
measures in diversity analysis, data mining, and pattern

recognition applications. It will be interesting to review the
field after a further decade of development.
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